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Abstract—Analytical and numerical solutions are presented for steady-state, thermal convection induced by
hot/cold pipes buried in a saturated, semi-infinite, permeable medium, the surface of which is horizontal,
impermeable and subject to Robin’s {convective) boundary condition. The pipe’s surface is impermeable and
isothermal. The analytical solution consists of the construction of a double expansion in terms of the
Rayleigh and the inverse Biot numbers. Computer algebra (MACSYMA) is used to carry out the more
tedious mathematical manipulations. The numerical approach involves both the construction of a regular
perturbation expansion in terms of the Rayleigh number and the solution of the full nonlinear governing
equations. The results of the perturbative analysis and the numerical calculations, which include
descriptions of the flow and temperature fields as well as correlations for the Nusselt number, are compared
and found to agree favorably.

1. INTRODUCTION

THE PROBLEM of heat losses from buried pipes has
received considerable attention in recent years. This
problem arises, for example, in connection with
underground electrical power transmission lines,
burial of nuclear waste, and oil/gas pipe lines in which
the oil/gas is heated or chilled in order to reduce the
pumping costs.

Most of the existing heat transfer calculations only
take into account conduction [1-4]. However, in
many cases, the medium is permeable to fluid motion,
and the temperature difference between the pipe and
the medium surface may cause thermal convection.
Indeed, where the medium is permeable, the role
played in the heat transfer process by the free
convective effects typically is as important as that
played by the conductive effects.

In spite of this fact, very little has been done to study
the thermal convection associated with pipes buried in
a permeable medium. To date, Schrock et al. [5],
Fernandez and Schrock [6] and Farouk and Shayer
[7] have carried out numerical analyses and
experiments for a hot cylinder buried beneath a
permeable horizontal surface; and Bau [8] has
obtained a low Rayleigh number analytical solution
for pipes buried beneath both permeable and
impermeable, isothermal surfaces. Unfortunately, the
utility of the analytical solution presented in the latter
work is limited in that the isothermal surface is an
idealization. In practice, one would expect to observe
temperature variations along the medium’s surface.

In the present work, we extend the work presented
in ref. [8] to include Robin’s (convective) boundary
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condition at the medium’s surface. We use a variety of
analytical and numerical tools to obtain descriptions
of the flow and temperature fields around the buried
pipe as well as correlations for the heat transfer. In
Section 2 we formulate the mathematical problem. In
Section 3 we solve the governing equations using
regular perturbation expansions. The perturbation
expansion is instrumental in the construction of a
correlation for the Nusselt number. The nonlinear
governing equations are also solved numerically
{Section 4). The numerical solution is used to verify
and establish the range of utility of the heat transfer
correlation developed in Section 3. The results of the
perturbative analysis and the numerical simulation are
described and discussed in Section §.

2. MATHEMATICAL MODEL

Consider a pipe of radius #, buried at a depth of d
beneath the horizontal, impermeable, surface of a
semi-infinite, fully saturated porous medium (Fig. 1).
The pipe’s surface is maintained at a uniform
temperature 7; such as might be the case when there is
turbulent flow inside the pipe. The ambient above the
semi-infinite medium is maintained at constant
temperature T,. As a result of the temperature
difference between the pipe’s surface and the ambient,
(T, — T,), motion is induced in the medium. The
symbol ~ in the above expression denotes the
dimensional form of variables which will later be made
nondimensional. Robin’s (convective) boundary
condition is imposed on the medium’s surface.

It is convenient to formulate this problem using
bicylindrical coordinates [10] since the boundaries
can be prescribed along constant coordinate lines.
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NOMENCLATURE
a scale factor for the bicylindrical Ray,  effective Darcy—Rayleigh number,
coordinates (sinh a,) Radf?,
Bi Biot number, k#, /k,, Re Reynolds number
Big effective Biot number, Bid/#, i radius of the pipe
d, characteristic dimension of the porous T temperature, (T — T,)/(T, —
medium . X,Y  Cartesian coordinates (Fig. 1).
d burial depth, d/f,
g(x, B) a metric coefficient, equation (5) Greek symbols )
g* gravitational acceleration o, B blcyllgdrxcal coordinates defined by
G,H functions, equation (5) equation (1) o
h convective heat transfer coefficient at eq equivalent thermal diffusivity of the
the medium’s surface porous medium
i i B* thermal expansion coefficient of the
keq equivalent thermal conductivity of the ! :
porous medium saturating fluid
N, coefficients in the expansion for the 4 pgmea?:hty ] )
Nusselt number, equation (6) v kinematic viscosity of the saturating
Nu Nusselt number, /0 o.q fluid )
Pr Prandtl number, v/u, ¥y streamfunction.
Q heat flow per unit length of the pipe, Subscripts
O/keo( T = T5) . ¢ 1 pipe surface
9 heat flux on the pipe’s surface or on 2 surface of the semi-infinite medium.
the medium’s surface, §7; (T, — T3)
Ra Darcy-Rayleigh number, Superscript
g*B(T, — Ty)AF, vt dimensional quantities.
=0 where constant « lines are the circles:
2 =0 s
Y (X—acotha)?+Y?2= (—-—2—) )
dl » sinh® «
-1 The pipe and the medium surface correspond,
respectively, to o = «, and o = 0. The scaling factor
j can be expressed asa = sinh o, and the burial depthas
d = cosha,.
g The fluid motion is described by two-dimensional
Darcy—-Oberbeck-Boussinesq equations:
X 62|// 62111
F16. 1. The geometrical configuration and the coordinate 6,82 - aRa[G(a B +H( A _E 3)
system.
¢ T FT _oy oT oy oT
798 " n 0B 0B oo
with the boundary conditions
Another. advar}tage of the bicylindrical condina.te Y=0 T=1 ata=ag
system is that it permits us to map the semi-infinite
physical domain into a finite rectangle. T‘hus, when Y=0 f:_’f_ = Big"*a,f)-T ata=0
one attempts to solve the problem numerically, one Oot
need not truncate the physical domain and impose ;44 the symmetry conditions
somewhat arbitrary boundary conditions at the
truncation lines as was done in [7]. Y= 13 =0 atf=0,n. 4
' Th'e conversion of Cartesian coor(‘iinates.(X , Y? into In the above
bicylindrical coordinates (x, f) (Fig. 1) is achieved 1—cosha-cosf
through the transformation: He, p) = F
g : {cosh a —cos f)
ip > sinh o+ sin §
X +iY = acoth (1) —_ 5
( 2 6. p) {cosh & —cos B)? ©)
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and

a 2
9. ) = (cosh a—cos B> '

Equations (3)—(5) are written in nondimensional form.
The length scale is the pipe’s radius, 7,; the velocity
scale is a,/f;; and the temperature scale is (T; — 7).
The Darcy—Rayleigh number (Ra) and the Biot
number (Bi) are based on the pipe’s radius. Hence

gpand=T) W

R =
4 oV ke,

(©6)
The effective Rayleigh and Biot numbers differ from
the above and are proportional to the burial depth, so
that

Ra, = Racosha,; and Big;= Bicoshua,.

Note that Ra > 0 corresponds to a hot pipe buried
beneath a cold surface (7; > T;) or a cold pipe
(T; < T,) installed above a hot surface. On the other
hand, Ra < 0 corresponds to a cold pipe (T; < T3)
buried beneath a hot surface or a hot pipe located
above a cold surface. In the latter two cases, one
should invert the direction of the gravity vector in
Fig. 1.

The local heat flux (g) at the pipe’s surface (¢ = a,)
or at the medium’s surface (x = 0) can be calculated in
terms of temperature as:

cosh o —cos oT
q= (——B> = NG
a Oa a=0o0ra;
The heat flow (Q) per unit length of the pipe is
Q= j ( ) dg. @®)
a=0ora;

The Nusselt number (Nu) is defined as the ratio of
the total heat flow (Q) and the heat flow in the absence
of convection (Q,,q)

Nu= Q/Qcond . (9)

Unfortunately, no exact expression for Q.. Is
available; so we rely on the following approximate
expression for Q.4 which was reported in [4]

Qcona ~ aBi[(1+aBix,)? — 117112 (10)
1

According to ref. [4] and to subsequent calculations
carried out here, this expression is accurate within 4 9
for (aBi) = 1.

3. SMALL RAYLEIGH NUMBER SOLUTION—
A PERTURBATION EXPANSION

No exact solution is known for equations (3)—(5). In
this section, we describe a perturbative analysis which
allows us to obtain approximate solutions for small
values of the Rayleigh number. To this end, we
consider the dependent variables (¢, T) to be functions
of both the coordinates («, #) and the Rayleigh number
(Ra). Next, we expand the dependent variables into

265

Taylor series in terms of Ra:

T(w.p;Ra) = 3 R&Ta,f),
s=0
VB Ra) = 5 Ra'l (o f) (1)
s=1
Q(Ra) = i Ra*’Q, and Nu(Ra)= i Ra’N,

=0 s=0

where the terms with index s are the coefficients in the
Taylor expansions.

By introducing these expansions (11) into the
differential equations (3)-(5) and comparing
coefficients of like powers in s, we obtain an infinite set
of linear partial differential equations

a1, 97T,
=0, Y,=0
0o 6/32 Vo
o, %Y _
s S= 12
+ o ﬁ ﬁ (12)
and

PT, PT _ & WT-)
a2 | o ,.;, dap 2D

with the boundary conditions:

Ty=1, T,=0, y,=0 (s=1) ata=a,
oT,
0—;=Bi9”2(a,ﬂ)7}, Y;=0 (s20) ata=0
oT,
aﬂs=l//s=0 at f =0,

At each level of approximation, the respective
contributions to the heat flow and to the Nusselt
number are:

= (9T, A
.= 2 dp and N, =
Q f—n<aa )u=00ra, Qcond

In an earlier paper [§], one of us obtained analytical
solutions for equations (12), for s < 3, for the special
case of an isothermal top boundary (Bi- o).
Unfortunately, for the more general case of finite Bi, a
closed-form analytical solution is not feasible because
of the appearance of the metric coefficient g'/*(a, f), in
Robin’s boundary condition at « = 0 [3,4]. In this
paper, we use two different approaches to overcome
this difficulty, one analytical and one numerical. Per
the numerical approach described in Section 3.2, we
solve the equations in (12) using finite differences. Per
the analytical approach described in Section 3.1, we
further expand the dependent variables into Taylor
series in terms of the inverse of the Biot number (Bi !).

The rationale for the deployment of the analytical
tool is two fold. First, the numerical solution predicts
extremely small corrections at O(Ra) which may be
subject to numerical error. Thus, it is desirable to
obtain analytical expressions as well. Second, it gives
us the opportunity to demonstrate the usefulness of
computer algebra in heat transfer analysis.
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3.1. Analytical solution—a double expansion in Ra
and Bi

In order to solve equations (12) analytically, we
further expand the dependent variables (T,.y,) into
Taylor series in terms of Bi~*

o

7; Z Bl pT (as B)’ ‘ps = Z Bi_pws-l’(a'ﬁ)
p=0 "“’w (13)
= z Bi?Q,, and N,= Y Bi"’N,,.
p=0 p=0

By introducing the above expansions into the partial
differential equations and equating coefficients of like
powers of Bi, we obtain the following set of linear
partial differential equations:
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and

=¢,,=0 (s=0,p>0) at =07

Also
* (0T, 1
= 5 d d N, ,=—2C
Qs,p fﬂ( Oa >1:00”1 B an s,p Qo,o s,p

where

1 P
P Qs.p — N Z Cs,p-—kQO,k'
0,0 k=1
The advantage of equations (14) over (12) is that
they can be solved exactly. To this end, we expand the
dependent variables (i, ,, T, ,) into their Fourier series
in terms of §. That is:

X
o T,= Y fipal®)cosnf
6 7vO,IJ_‘_a ’TO,P _O n=0 (16)
da?  opr ’ i g
) ) sp = gs,pal®) s np.
0 T;.p+a 7;.11: i L a('l’}k’ —j.p— k) n=1
0o® op? j=1k=0 o, B) Upon substitution of (16) into (14), one obtains
(14 P
) equations of the general form
sy Y 0Ty, 1 d?y
ot a/};p =G, f)— ~*+H ,ﬂ) sﬁ = 42y =LHS@ (17
with the boundary conditions: where y stands either for f; ,  org, ,,and the LHSisa
forcing term which increases in length and complexity
Too=1;, Tp,=0 (p=1) as the order of the approximation increases.
T =y, =0 (s>1.p>0) ata =a, Fortunately, the tedious repetitive labor of solving
P P equations like (17) can be delegated to the computer.
Lo=0 (s=0) (I5)  To this end, we use MACSYMA. In Fig. 2, we
1 oT, reproduce a short program which describes the
1, = 7720 ) B; (s20,p=1), ata=0  solution procedure for g, , (). Similar procedures
g were used to solve the other equations involved.
Y,,=0 (s20,p=20) In Fig. 2. lines labeled (ci) and (di) represent the
(cl) loadprint:false$
(c2) y:y(x)
(c3) eql: diff(y,x,2)-n"2rxy=2xntexp(-n4x)/xl;
2 - nx
d 2 n %e
d3) ——- (¥(x)) - n y(x) = ----=----a-
2 x1
dx
{(c4) assume(n>0)$
(c5) ode2(eql,y,x);
- nzxx
(2 nx+ 1) %e n -nx
(d5) FOX) = = —mommmmmmmmm e + %kl %e + %k2 %e
2 n xl
(c6) linsolve(Csubst(xl,x,part(d5,2))=0,subst(0,x,part(d5,2))=03,C%kl,%k2]);
2 n xl
1 %e ~2nzxl -1
(as) EXKl = -----=-—----- , %K2 = mmmmmmmm e
2 nxl 2 n xl
%e -1 2 n xl1 %e - 2nxl
(c7) yy:part(dS,2)s
(c8) yy:ratsimp(eviyy,d6))s
(c9) yix):=""'yy;
2 nxl 2nzx
X %e + (1 - %e ) x1 - x
(a9) Y(X) 1= = --m-mmmmm oo
2nzxl +nx nx
x1 %e - %e x1

(cl0) quit();

FIG. 2. An example of a MACSYMA program for the soiution of second-order ODE.
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user’s input and the machine’s response, respectively.
For brevity’s sake, we denote g, ; , by y and use x
instead of «.. In line (c2) we declare y to be a function of
x. In line (c3) we type in the corresponding differential
equation. The machine responds in line (d3) with a
somewhat nicer expression which allows us to verify
conveniently the correctness of the input. In line (c5)
we invoke the routine (ode2) which is a solver for
ODEs of the second order. The solution appears in
line (d5) with two constants of integration %,k1 and
%k2. In order to calculate these constants of integra-
tion, we utilize the boundary conditions and then solve
two linear algebraic equations for %k1 and %k2 by
invoking the linear equations solver (linsolve) in line
(c6). The expressions for %kl and %;k2 appear in line
(d6). The variable yy appearing in lines (¢7)—(c9) is a
dummy variable which is wused merely for
programming convenience. In the final result listed in
line (d9), the undetermined coefficients %;k1 and %k2
are replaced with their corresponding values and the
resulting expression is simplified.

Manipulations like those described above allow us
to obtain solutions for the streamfunction and the
temperature fields. A sample of the results is given
below:

To0 = atfoy
I[o; —a sinh{x—a,)cosf
oy =- 2 -
al of o, sinh o,

lJa—a, /1
Ty,=—|—5——+icotha
0,2 azl: a% <061 2 1>

1 /1 inh(x —
—~<*+cothal>mcos

sinh o, By

1cosh o, sinh 2(x —a,) cos ZBJ

2 o, sinh a, sinh 2¢,
" 1o sin 8
—] a —_——
1o 2a, cosha—cos §
i sinh na
+ e "™ ———sginn
,,; sinh na, B:l

‘//1.1

etc.

In this section, our prime interest is in obtaining
correlations for the heat transfer. Keeping this fact in
mind, we can save a considerable amount of effort by
considering the relationship

L1 eT,,
- s d
Qe aljo (UZa,ﬂ) o ) g

oy
Jf ik "‘dﬁd
‘11, 1k=0J0

withs> 1,p> 1.

1 sin 8 [a 1 N sinh(a, —2a):|

2a1 cosha—cosfla;, 2  2sinha,

(19)

The foregoing can be rewritten as

2
Oup= —— [ f 100 =4 £, 11 O)]
an,

2y

fs —~jhp= kng)knda
(20)

where ’ denotes differentiation with respect to a. The
advantage of expressions (19) and (20) over (15) is
that to obtain the correction Q, ,, we need only cal-
culate terms up to order (s, p— 1). Expression (20) is
especially convenient for use with MACSYMA.
Needless to say, we use computer algebra to evaluate
both the derivatives and the integrals in (20). As a
result of our effort, we obtain a few analytical
expressions for @ , as functions of «,, i.e.

2n
Qo.o =
%

2n

Q0,1 = /3

ao}

0 _2n/1 + cosh
%27 42 \a  2aZsinha,

Because of the considerable length of the analytical
expressions for other Q, ,, we do not reproduce them
here (they can be obtained from us upon request).
However, we do depict in Fig. 3 the corresponding
numerical values of Q, , as functions of the burial
depth (d). We note that with an increase in d, there is a
gradual increase of the values of Q,, and —Q;,
whereas —Q; , and @, , decrease very steeply. Having
thus obtained the values of Q, ,, we can calculate the
heat flow for low Rayleigh numbers and high Biot
numbers using the following formula:
0= (Qo,o"f‘Bi‘lQo,l +Bi_on.z)
+Ra(Bi™'Q,, 1+Bi‘2Ql 1)+ Ra*Q,
+Ra*Q;0+0(Bi~3 RaBi~* Ra®Bi™ !, Ra*).

21

d

FIG. 3. The coefficients Q, ,,Q, ,, @, 0 and @, , depicted as

functions of the burial depth (d).
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In principle, additional terms could be calculated in
(21) using the techniques outlined above; but as the
order of approximation increases so do the demands
on computer time and memory. We note in passing
that even if many terms in the expansion were
calculated, the expansion would not be valid for the
full range of Biot and Rayleigh numbers since
functions like Q(Ra, Bi) typically have singularities
lying in the complex Bi and Ra planes which limit their
radii of convergence. With the limited number of terms
we have, we are unable to find the radius of
convergence of equation (21).

3.2. Numerical solution—an expansion in Ra

In this sub-section, we use equations (12) as our
starting point. We noted earlier that these equations
cannot be integrated analytically in a closed form. The
same equations can, however, be integrated
numerically. To this end, we use a second-order
accurate finite-difference scheme. As a result of these
calculations, we obtain the coefficients N, in the
Nusselt number expansion:

Nu= Y N,Ra* where Ny= 1.

s=0

(22)

All the calculations are carried out for two different
grid sizes (nx n) = (45 x 45) and (90 x 90). Although
the equations solved are linear, it was necessary to use
a relatively large number of grid points since the rate of
convergence is adversely affected by the singularity at
(¢ = B = 0), which corresponds to infinity in the
physical plane.

The actual values of N, are obtained using
Richardson’s extrapolation technique to zero grid size
[12]. Briefly, in this method, N, is considered to be a
linear function of n~ 2. The extrapolated value of N, is
obtained by taking the limit of N, as n — w. The
procedure is described schematically in Fig. 4, where
we depict values of N, and N, calculated at a = o

875 .1

g .@25 .85

2
188/n

FiG. 4. Richardson’s extrapolation of N, and N; to zero

grid size. The solid line corresponds to the values calculated

at the pipe’s surface, while the dashed line represents the

values next to the medium’s surface. Burial depth (d)is 2 and

Biot number (Bi} is oo, Symbols correspond to the numerical
data.
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30

28

2,”N3 x 100

18

FIG. 5. The variation of N, and N ; as a function of the burial
depth (d) for different values of Biot number (Bi).

{solid lines) and o = o,/(n—1) (dashed lines) as
functions of n~2 for a pipe buried at depth d =2
beneath an isothermal surface (Bi — ). In order to
convince ourselves that N, indeed, behaves linearly
with n”2, we calculated N, also for a number of
intermediate values of n (i.e. n = 30,40, 50, 60 and 70).
The latter are depicted as symbols in Fig. 4. Clearly, a
linear relationship exists between N, and n~? for
n > 30.

We also compare the numerical results with the
analytical ones (Section 3.1 and ref. [8]). The latter are
depicted as horizontal dashed lines in Fig. 4, and they
agree within 0.1 9 with the extrapolated values for N,

The results for N, and N, as a function of the burial
depth d are depicted in Fig. Sfor Bi = 0.1, 1.0and oC,
The coefficient N, = 0for Bi= 0. For0.1 < Bi<
and d > 2. N, is very small. Hence, in most practical
cases, one may assume N; ~ 0 for all Biot numbers.
This is in agreement with the analysis presented in
Section 3.1. Both the absolute values of N, and N,
increase as the burial depth increases and as the Biot
number decreases. This indicates the growing relative
importance of convection as d increases and/or Bi
decreases.

Accurate estimation of the largest value of Ra (the
radius of convergence denoted by Ra.) for which the
series {22) is still convergent is not feasible due to the
small number of coefficients (N} available to us. The
fact that N, and N are of about the same order of
magnitude suggests that Ra, ~ O(1). The range of
utility of the series (22) based on comparison with the
numerical solution of the non-linear equations (3} is
given in Fig. 6 as a function of the Biot number. The
radius of convergence increases with Biot number.

One can significantly increase the range of utility of
the series (22) through the deployment of non-linear

transformations. We use Shanks’ transformation
[14, 15] to obtain:
1+ ARa+ BRa?
Nu = it ARa+BRa” 23)
I+ ARa

where A = —N,/N,and B=N,.
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88 T T T 7

Y 4@ |

Shank’s transformation

2@ ¥

Taylor expansion

Mo
-
1288

i
128

Bi

1geee

F1G. 6. The range of utility of Taylor expansions and
Shanks’ transformation for a hot pipe depicted as a function
of the Biot number (Bi).

The values 4 and B can be calculated from Fig. 5 or
by using the following correlation:

A=a,d* and B= 10"%(b,d>>+b;) (24)
where
a, = 0.28+(0.058/Bi)—(0.0029/Bi?)

a, = 0.4 —(0.048/Bi) + (0.0042/Bi)
b, = 1.084 —(1.016/Bi)+ (0.091/Bi?)

b, = 0.393+(0.593/Bi)—(0.053/Bi?)
and
by = 3.85tanh(0.45/Bi)—0.71.

It turns out that, for the hot pipe (Ra > 0), Shanks’
transformation increases the range of utility of
expression (22) by at least an order of magnitude. The
range of utility of Shanks’ transformation is estimated
by comparing results obtained from (23) with
numerical solutions of the full non-linear equations.
This range of utility is depicted in Fig. 6 as a function
of the Biot number.

The results for the case of the cold pipe (Ra < 0) are
not nearly as spectacular. Here, the range of utility of
Shanks’ transformation (23) is about the same as that
of the series (22). This poor performance of Shanks’
transformation is apparently a consequence of the fact
that for Ra <0, Shanks’ transformation becomes
singular at Ra = — 1/4. This poor performance also
can be explained on the basis of physical
considerations. The perturbation expansion de-
veloped here assumes that the phenomena is con-
duction dominated. This is true in the case of the
hot pipe. However, in the case of the cold pipe,
convective effects may be more important than the
conductive ones, and thus poor performance of the
series solution may be expected.

Thus far, we have succeeded in obtaining a
correlation for the Nusselt vs Rayleigh number
[equation (23)] using perturbative analysis. The
numerical solution of the non-linear equations serves
as an important tool in the verification of the above
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correlation. In the next section, we briefly describe this
numerical procedure.

4. SOLUTION OF THE NON-LINEAR PROBLEM

The governing differential equations (3), in
conserving form, are converted into finite-difference
equations. Central differences and Patankar’s power-
law technique are used to approximate the diffusive
and convective terms, respectively [13]. The above
numerical scheme is overall first-order accurate.

The grid system in the physical domain is shown in
Fig. 1. Through the use of bicylindrical coordinates,
the computational domain is transformed into a
rectangle (0 £ f <7, 0 < < o). A relatively large
number of grid points are used here because the rate of
convergence is adversely affected by the singularity at
o = f =0 (the infinity in the physical plane). The
number of grid points used ranges from 41x 51 to
61 x 91 depending upon the value of the burial depth
and the Darcy-Rayleigh number. For the higher
effective Darcy—Rayleigh numbers and for negative
Rayleigh numbers, one must use the large number of
grid points.

We solve the finite-difference form of governing
equations using successive over-relaxation {11]. For
low effective Rayleigh numbers, the optimal over-
relaxation parameter can be used [11]. As the effective
Rayleigh number increases, however, we find it
necessary to decrease the relaxation parameter in
order to maintain numerical stability. The iterative
procedure is terminated once the following
convergence criterion was satisfied:

sl _apa pmtl_ T
max{ Y . ”}Ss‘

n+l -t 1
L i T;

& was assigned the value 10~ * since the use of a more
stringent condition did not make any significant
difference in the solution. The number of iterations
(typically between 200 and 1200) required to satisfy
the above criterion varied with the effective Rayleigh
number and the overrelaxation parameter. The very
initial state consists of no motion and a conductive
temperature distribution.

5. RESULTS AND DISCUSSION

In this section we describe the results of the
numerical experiments (Section 4) as well as those of
the perturbative analysis {Section 3). The first part of
the section is devoted to a description of the
temperature and flow fields while the second part deals
with heat transfer. In the third part, we briefly discuss
the range of validity of our results.

5.1. Flow and temperature fields

The temperature and flow fields associated with hot
and cold buried pipes are depicted in Figs. 7-9. These
are the results of the numerical simulation (Section 4).
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FiG. 7. Thermal convection around a hot buried pipe (d = 2,

Ra =10, Bi = 1). The uniformly spaced streamlines and

isotherms are shown on the LHS and RHS of the figures,
respectively.

Both the streamlines and isotherms are uniformly
spaced.

Figures 7 and 8 describe, respectively, the cases of
hot and cold pipes buried at a depthd = 2, with Bi = 1
and |Ra| = 10. In the case of the hot pipe (Fig. 7), the
fluid adjacent to the pipe becomes hotter and thus
tends to rise until it hits the top, cold surface. As the
fluid travels along the cold, horizontal surface, it cools
down and eventually descends to form a convective
cell. On the other hand, in the case of the cold pipe
(Fig. 8), the fluid adjacent to the pipe becomes colder
and tends to sink. As the fluid descends, its
temperature is equalized with the temperature of its
surroundings until eventually it loses its negative
buoyancy. Since fluid withdraws to the vicinity of the
pipe due to pressure differences, once again we observe
the development of a single convective cell. In the case
of the hot pipe (Fig. 7), no plume structure develops at
this low Rayleigh number (Ra = 10, Ra = 20). In
contrast, in the case of the cold pipe (Fig. 8), one
observes a clear evolution of a plume structure. This
difference is attributable to the fact that, in the case of
the cold pipe, the convective motion is not constrained
by a surface, while in the case of a hot pipe it is.
Consequently, Ra. in Fig. 8 is considerably larger
than the one in Fig. 7. As Ra, increases, a plume
structure develops even in the case of the hot pipe as is
evident from Fig. 9 (Rag = 100).

In all our numerical experiments, we observed a
flow structure consisting of two counter-rotating
convective cells (Figs. 7-9). In the range of parameters,
we considered, no two-dimensional bifurcations into
multicellular convection were detected.

|

FiG. 8. Thermal convection around a cold buried pipe

d=2, Ra= —10. Bi=1). The uniformly spaced

streamlines and isotherms are shown on the RHS and LHS of
the figure, respectively.

FI1G. 9. Thermal convection around a hot buried pipe

(d =10, Ra = 10, Bi = o). Uniformly spaced streamlines

and isotherms are shown on the LHS and RHS of the figure,
respectively.

The temperature distribution along the top surface
is depicted in Fig. 10. The upper and lower halves of
the figure correspond, respectively, to hot (Ra > 0)
and cold (Ra < 0) pipes. The effect of the Rayleigh
number on the temperature distribution is shown on
the RHS for Bi = 1, while the effect of the Biot number
is depicted on the LHS for |Ra| = 10.

For Bi — oo, the temperature of the top surface
remains uniform. As the Biot number decreases, the
temperature deviates from uniformity and a Gaussian-
like temperature distribution evolves. The tem-
perature extreme occurs immediately above the pipe.
For the hot and cold pipes, the temperature peak
increases in magnitude as the Biot number decreases.
As the Rayleigh number increases the temperature
peak increases for the hot pipe while it decreases for
the cold pipe. In the latter case, conduction causes a
decline in the surface temperature while the
convection tends to equalize the surface temperature.
Thus, as the intensity of the convection increases (as
the magnitude of Rayleigh number increases) the
magnitude of the temperature extreme decreases.

5.2. Heat transfer

In this sub-section (Figs. 11-13), we compare the
results obtained with the correlation [equation (23)]
derived in Section 3 with those of the numerical

Surface Temperature

12.5 25

Fi1G. 10. Variation of the medium’s surface temperature as a

function of the horizontal distance (') from the pipe’s axis for

various values of Biot number (Bi) and Rayleigh number
(Ra). The burial depth d = 2.
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F1G. 11. The Nusselt number (Nu) is depicted as a function

of the Rayleigh number (Ra) for various values of the Biot

number (Bi) for burial depth d = 2. The curves correspond to

the Shanks’ transformation while the symbols represent the
results of non-linear numerical simulation.

simulations {Section 4) as they pertain to the heat
transfer problem.

The Nusselt number as a function of the Rayleigh
number is depicted in Fig. 11 for hot and cold pipes
buried at depth d =2 for Bi=0.1, 1 and . The
various curves correspond to the correlation
[equation (23)] while the symbols represent the results
of the numerical simulation (Section 4). Clearly, there
is good agreement between the correlation and the
numerical results. The range of utility of the
correlation, depicted in Fig. 6, is determined as the
largest Rayleigh number for which the difference
between the correlation and the numerical simulation
is smaller than 5%,. The top and bottom curves in Fig.
6 indicate the range of utility of the correlation for the
cases of the hot and cold pipes, respectively.

In Fig. 12, we depict the heat flow (Q) associated
with hot and cold pipes buried beneath an isothermal
surface (Bi —» o) as a function of the burial depth (d)
for Ra = -1, 10, 20, 30 and 40. The solid lines in Fig.
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F1G. 12, The heat flow rate (Q) is depicted as a function of the
burial depth (d) for Bi = oc. Solid curves represent the
correlation fequation (23)] while symbols represent the
results of numerical experiments. The numerical data is
connected with dashed lines. The asymptotic value for a pipe
buried in an infinite, porous medium is denoted by the
horizontal broken line on the RHS of the figure.
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12 represent the correlation (23) while the symbols
denote the results of the numerical simulation. The
dashed lines are provided for better readability and
they connect the numerical data points. In the case of
the hot pipe, the heat interaction (Q) decreases initially
as the burial depth increases, reaches a minimum and
then increases again., approaching asymptotically a
value which corresponds to the heat losses associated
with a pipe buried in an infinite medium (the
horizontal broken lines on the RHS of Fig. 12). The
asymptotic values for a pipe buried in an infinite,
porous medium were obtained from Cheng’s work
[9]. Clearly, in the case of the hot pipe, there exists an
optimal burial depth for which the heat losses are
minimized. A similar optimum does not exist for the
case of the cold pipe. Here, the heat losses (Q) decrease
monotonically as the burial depth increases until they
reach the asymptotic value associated with a pipe
buried in an infinite medium.

A physical explanation for the existence of an
optimal burial depth in the case of the hot pipe was
given in ref. [9]. Briefly, the heat transfer process
consists of both conduction and thermal convection.
As the burial depth of the hot pipe increases, the
conductive heat losses are reduced. At the same time,
however, the effective Rayleigh number increases,
which implies higher losses by convection.
Consequently, there is an optimal value for which the
total heat transfer is minimized. As we mentioned
earlier, such an optimum does not exist in the case of
the cold pipe. Although the conductive losses of the
cold pipe are reduced as the burial depth increases, the
convective losses remain about the same, a fact which
excludes the existence of an optimum point.

In Fig. 13, we examine the effect of the Biot number
on the heat transfer. We depict the heat losses {(Q) asa

1.4 I
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F1G. 13. The heatflow rate (Q) is depicted as a function of the
burial depth (d) for Ra = 10 and for Bi = 0.1, 1 and . Solid
curves represent the correlation [equation {(23)] while
symbols represent the results of numerical experiments. The
numerical data is connected with dashed lines. The
asymptotic value for a pipe buried in an infinite medium is
given by the horizontal broken line on the RHS of the figure.
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function of the burial depth (d) for Ra = 10 and
Bi = 0.1, 1 and oo. The solid curves are the results of
the correlation [equation (23)] while the various
symbols represent the results of the numerical
simulation (Section 4). The dashed line connects the
numerical data points to facilitate a better
appreciation of the trends. As the burial depth
becomes large, all the curves approach asymptotically
a common limit [9] which corresponds to a pipe
buried in an infinite medium (the horizontal dashed
line on the RHS of the figure). The magnitude of the
optimal burial depth decreases as the Biot number
decreases. For Bi = 0.1, we do not observe an optimal
depth. Probably, this is because convection plays a
larger and larger role in the heat transfer process as the
Biot number decreases, while the conduction effects
become less and less significant.

Finally, let us examine the contribution of thermal
convection to heat losses from buried pipes. Consider,
for example, a hot pipe, with a radius #; =0.25m,
buried in silica sand (grain size of about 2.54 x 10~ *m
and permeability A~ 6x 107! m?) saturated with
water. The temperature difference between the pipe
and the earth’s surface is T, —7T, = 60°C. The
corresponding Darcy—Rayleigh number is Ra ~ 10.
For a pipe buried at depth 2m (d/f, = 8), Nu ~ 2.8.
Thus, the thermal convection represents two-thirds of
the total heat losses.

5.3. The range of validity of the results

In this manuscript, we describe theoretical results
which are based on the assumption that the flow is
two-dimensional and steady. This, however, is the case
only for a certain range of Rayleigh numbers.
Experiments we are conducting in our laboratory
indicate that there exists a critical Rayleigh number,
beyond which the convective motion becomes three
dimensional and oscillatory. For example, for burial
depths of 7 and 14, the bifurcation into three-
dimensional convection occurs at Ra.; = 90 and 200,
respectively. However, these values are somewhat
larger than the range of utility of our correlation
(Fig. 6).

Another matter of concern is the validity of the
Darcy-Oberbeck—Boussinesq (DOB) equations for
the range of Rayleigh numbers considered in this
study. Darcy’s law is considered to be valid for
Reynolds numbers Re < 10, where Re = i.d,/v.In the
foregoing equation, d, is a characteristic dimension of
the porous media (i.¢. pore or particle diameter) and i,
is the Darcian velocity. In our case, the maximum
velocity is obtained next to the pipe and is
O[gB(T, — T1)A/v]. Consequently, we conclude that
the DOB equations are valid for

Ra < 10Pr 22
el
a d

P

where Pr is the Prandtl number. For example, in the
case of water Pr~8 and r,/d, ~ 10?, the DOB

K. HiMaSEKHAR and H. H. Bau

equations are valid for Ra_; ~ 0(107). This magnitude
of the Rayleigh number is well above those considered
in this study.

6. CONCLUSION

A theoretical solution has been provided for the
flow and temperature fields around a pipe buried in a
permeable medium, the surface of which is subject to
Robin’s boundary condition. Expressions for the
streamfunction and temperature fields were provided
using a double expansion in the Rayleigh number and
the inverse of the Biot number. The analytical
expressions were valid only for small Rayleigh
(Ra < 1) and large Biot numbers. The restriction on
the magnitude of the Biot number was removed by
constructing numerically a perturbation expansion.
This allowed us to derive a Taylor series for the
Nusselt numbers in terms of the Rayleigh number. The
range of validity of the above series was still restricted
to small Rayleigh numbers. However, by using a non-
linear transformation, we were able to considerably
increase the range of utility of the series for hot pipes.
Thus, we obtained a correlation for the Nusselt
number as a function of burial depth, Rayleigh
numbers and Biot numbers. The validity and range of
utility of the correlation were established by
comparison with numerical solutions of the non-linear
equations.

Finally, we demonstrated that an optimal burial
depth, which was originally observed in ref. [8] for the
case of an isothermal medium surface, also exists for
surfaces with convective boundary conditions. The
magnitude of this optimal burial depth decreases as
the Biot number decreases.
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CONVECTION THERMIQUE ASSOCIEE AVEC DES CANAUX CHAUDS/FROIDS DANS
UN MILIEU SEMI-INFINI, POREUX ET SATURE

Résumé—On présente des solutions analytiques et numériques pour la convection thermique permanente
induite par des canaux chauds/froids dans un milieu poreux saturé, semi-infini, dont la surface est hori-
zontale, imperméable et sujette 4 la condition limite de Robin. La surface du canal est imperméable et
isotherme. La solution analytique concerne un double développement en termes de nombres de Rayleigh
et de Biot inverse. L’ordinateur est utilis¢é pour les manipulations mathématiques les plus pénibles
(MACSYMA). L’approche numérique implique 4 la fois la construction d’un développement régulier
de perturbation en fonction du nombre de Rayleigh et la nature des équations complétes non linéaires.
Les résultats des deux approches qui concernent la description des champs d’écoulement et de tempéra-
ture ainsi que les valeurs du nombre de Nusselt, sont comparés et on trouve un accord satisfaisant.

THERMISCHE KONVEKTION AN HEISSEN/KALTEN ROHREN IN EINEM
HALBUNENDLICHEN GESATTIGTEN POROSEN MEDIUM

Zusammenfassung—Es werden analytische und numerische Losungen fiir die stationire thermische Kon-
vektion vorgestellt, welche durch heiBe bzw. kalte Rohre in einem gesittigten halbunendlichen durch-
ldssigen Medium induziert wird. Die Oberfliche des Mediums ist horizontal, undurchléssig und unterliegt
den konvektiven Randbedingungen von Robin. Die Rohroberfliche ist undurchlédssig und isotherm. Die
analytische Losung besteht aus einer doppelten Reihenentwicklung nach der Rayleigh- und der inversen
Biot-Zahl. Die Computer-Algebra (MACSYMA) wurde zur Bewiltigung der umfangreichen mathe-
matischen Prozeduren verwendet. Das numerische Nidherungsverfahren verwendet sowohl einen gewShn-
lichen Stérungsansatz mit einer Reihenentwicklung nach der Rayleigh-Zahl als auch die Losung des
vollstindigen Satzes der nicht-linearen Erhaltungsgleichungen. Die Ergebnisse der Stérungsanalysen und
der numerischen Berechnungen, welche sowohl Beschreibungen des Stromungs- und Temperaturfeldes
als auch Korrelationen fiir die Nusselt-Zahl enthalten, wurden verglichen und zeigen zufriedenstellende
Ubereinstimmung.

TEIIJIOBASI KOHBEKLMS, BbI3BBAHHAA 'OPAAUYHUMH/XOJIOAHBIMHA TPYBAMMU,
NOIrPY>XEHHBIMU B NMMOJNYBECKOHEUHYIO HACBIHIEHHYIO INOPUCTYIO CPEAY

Aunoramms—IIoJyqeHbl aHAJIUTHYECKHE W YHCJICHHBIE DEIICHHS YPaBHEHMH CTal[HOHAPHON TEILIOBOit
KOHBEKLMH, 06YCIIOBIEHHON rOpsAMHMH/XOIOAHBIME TPY5aMH, IOrPYKEHHBIMH B HACHILLEHHYIO HONybec-
KOHEYHYIO NPOHHIAEMYIO CPelly, OTPAaHMYEHHYIO TOPH3OHTAJLHOH HENPOHKLAEMO MOBEPXHOCTBIO, Ha
KOTOPOH BBHINMOMHAIOTCSA IPaHHYHEbIE YCiI0BHA Po6nHa. IToBepXHOCTL TPYOH! ABJISETCS HEMPOHUIIAEMOMH U
H30TEPMHYECKOH. AHAJIMTHYECKOE PellicHHE OCHOBAHO Ha MOCTPOCHHH NBOMHOrO pa3jIoXeHHs [0 napa-
MeTpaM Panes u buo. Ilpy BemonHeHHH Gojiee TPYAOEMKHX MaTeMaTHYECKMX PAacYeTOB HCIOJIb30Ba-
nace BbluMcaHMTENbHas nporpamma (MACSYMA). UncneHHOe peileHMe BKIOYAeT KaK MOCTPOEHHE
pa3oXeHHs PeTyJIAPHBIX BO3MYIUEHHH 10 yuciy Panes, Tak u pellleHHEe HCXOAHBIX HEJIMHEHHBIX YpaBHe-
Huil. [IpoBeneHo cpaBHeHHE pe3yILTATOB aHATM3a BO3MYLUEHHI M YHCIICHHBIX PACYETOB, ONHCHLIBAIOLWIMX
TIOJIA TEYEHHs M TEMIIEpaTypsl, a TAKXKe 3aBHCHMocCTel mna uucna HyccennTa; HalineHO xopolee cooT-
BETCTBHE BCEX BEJINYHH.



