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A~t~ct-Analytica and numericat solutions are presented for steady-state. thermal convection induced by 
hot/cold pipes buried in a saturated, semi-in~nite, permeable medium, the surface of which is horizontal, 
impermeable and subject to Robin’s (convective) boundary condition. The pipe’s surface is impermeable and 
isothermal. The analytical solution consists of the construction of a double expansion in terms of the 
Rayleigh and the inverse Biot numbers. Computer algebra (MACSYMA) is used to carry out the more 
tedious mathematical manipulations. The numerical approach involves both the construction of a regular 
perturbation expansion in terms of the Rayleigh number and the solution of the full nonlinear governing 
equations. The results of the perturbative analysis and the numerical calculations, which include 
descriptions of the flow and temperature fields as well as correlations for the Nusselt number, are compared 

and found to agree favorably. 

1. INTRODUCTION 

THE PROBLEM of heat losses from buried pipes has 
received considerable attention in recent years. This 
problem arises, for example, in connection with 
underground electrical power transmission lines, 
burial of nuclear waste, and oil/gas pipe lines in which 
the oil/gas is heated or chilled in order to reduce the 
pumping costs. 

Most of the existing heat transfer calculations only 
take into account conduction [l-4]. However, in 
many cases, the medium is permeable to fluid motion, 
and the temperature difference between the pipe and 
the medium surface may cause thermal convection. 
Indeed, where the medium is permeable, the role 
played in the heat transfer process by the free 
convective effects typically is as important as that 
played by the conductive effects. 

In spiteof this fact, very little has been done to study 
the thermal convection associated with pipes buried in 
a permeable medium. To date, Schrock er al. [S], 
Femandez and Schrock [6] and Farouk and Shayer 
[7] have carried out numerical analyses and 
experiments for a hot cylinder buried beneath a 
permeable horizontal surface; and Bau {S] has 
obtained a low Rayleigh number analytical solution 
for pipes buried beneath both permeable and 
impermeable, isothermal surfaces. Unfortunately, the 
utility of the analytical solution presented in the latter 
work is limited in that the isothermal surface is an 
idealization. In practice, one would expect to observe 
temperature variations along the medium’s surface. 

In the present work, we extend the work presented 
in ref. [8] to include Robin’s (convective) boundary 
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condition at the medium’s surface. We use a variety of 
analytical and numerical tools to obtain descriptions 
of the flow and temperature fields around the buried 
pipe as well as correlations for the heat transfer. In 
Section 2 we formulate the mathematical problem. In 
Section 3 we solve the governing equations using 
regular perturbation expansions. The perturbation 
expansion is instrumental in the construction of a 
correlation for the Nusselt number. The nonlinear 
governing equations are also solved numerically 
(Section 4). The numerical solution is used to verify 
and establish the range of utility of the heat transfer 
correlation developed in Section 3. The results of the 
perturbative analysis and the numerical simulation are 
described and discussed in Section 5. 

2. MATHEMATICAL MODEL 

Consider a pipe of radius i, buried at a depth of (z 
beneath the horizontal, impermeable, surface of a 
semi-infinite, fully saturated porous medium (Fig. 1). 
The pipe’s surface is maintained at a uniform 
temperature ?r such as might be the case when there is 
turbulent flow inside the pipe. The ambient above the 
semi-infinite medium is maintained at constant 
temperature ?“‘. As a result of the temperature 
difference between the pipe’s surface and the ambient, 
(-?; - $), motion is induced in the medium. The 
symbol ^ in the above expression denotes the 
dimensional form of variables which will later be made 
nondimensional. Robin’s (convective) boundary 
condition is imposed on the medium’s surface. 

It is convenient to formulate this problem using 
bicyIindrica1 coordinates [lo] since the boundaries 
can be prescribed along constant coordinate lines. 

263 



264 K. HIMASEKHAR and H. H. BAU 
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NOMENCLATURE 

a scale factor for the bicylindrical Raefl effective Darcy-Rayleigh number, 
coordinates (sinh aI) Rail/i, 

Bi Biot number, hi, /keg Rt? Reynolds number 

%ff effective Biot number, Bi$li, r1 radius of the pipe 

4 characteristic dimension of the porous T temperature, (F- Q/( i; - C$) 
medium X,Y Cartesian coordinates (Fig. 1). 

d burial depth, d/i1 
g(a, j3) a metric coefficient, equation (5) Greek symbols 

9* gravitational acceleration @,8 bicylindrical coordinates defined by 

G,H functions, equation (5) equation (1) 

k convective heat transfer coefficient at % equivalent thermal diffusivity of the 

the medium’s surface porous medium 

k eq equivalent thermal conductivity of the fi* thermal expansion coefficient of the 

porous medium saturating fluid 

N, coefEcients in the expansion for the 1 permeability 

Nusselt number, equation (6) V kinematic viscosity of the saturat~g 

Nl4 Nusselt number, Q/Qcond fluid 

Pr Prandtl number, v/ole4 $ streamfunction. 

Q heat flow per unit length of the pipe, 

&/k,(j; - %) 
Subscripts 

heat flux on the pipe’s surface or on 
1 pipe surface 

4 
the medium’s surface, @I /k,( ?I - T2) 

2 surface of the semi-infinite medium. 

Ra Darcy-Rayleigh number, Superscript ^ ^ _ 
g*B(r, - T,)Ri,lva,, dimensional quantities. 

.--~---~--_- --~ 

T2= 0 where constant tl lines are the circles: 

/ 2 \ 

FIG. 1. The geometrical contiguration and the coordinate 
system. 

Another advantage of the bicylindrical coordinate 
system is that it permits us to map the semi-infinite 
physical domain into a finite rectangle. Thus, when 
one attempts to soive the problem numerically, one 
need not truncate the physical domain and impose 
somewhat arbitrary boundary conditions at the 
truncation lines as was done in [7]. 

Theconversion of Cartesian coordinates (X, Y) into 
bicylind~c~ coordinates (a,@) (Fig. 1) is achieved 
through the transformation: 

(1) 

(X--ucotha)‘+Y’= k&j. (2) 

The pipe and the medium surface correspond, 
respectively, to a = al and a = 0. The scaling factor 
can be expressed as a = sinh al and the burial depth as 
d = cash aI. 

The fluid motion is described by two-dimensional 
Darcy-Oberbeck-Boussinesq equations: 

$$+$ = aRa G(a,p)*$+H(a,B).g 1 
a*T a9 a+ aT a+4 a7- (3) 

(3a2+dp2 = x*ap-ag.z 

with the boundary conditions 

$=O T=l ata=a, 

dT 
f/f=0 -=Big’f2(a,~)+T ata=O 

aa 

and the symmetry conditions 

*=g=O at/?=O,n. 

’ In the above 
i-cosha*cos/S 

H(a7 ‘) = (cash a - cos j?)2 

sinh a * sin @ 

G(a’ ‘) = (cash a -cos B)” (5) 
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and 
a 

> 

2 

gb, B) = 
cash a -cos fi ’ 

Equations (3H5) are written in nondimensional form. 
The length scale is the pipe’s radius, i,; the velocity 

scale is a,/?,; and the temperature scale is (Ti - p2). 
The Darcy-Rayleigh number (Ra) and the Biot 

number (Bi) are based on the pipe’s radius. Hence 

Ra = g*P*nfl(‘i; -RI and & = hi, 
k, . 

(6) 
E-4” 

The effective Rayleigh and Biot numbers differ from 
the above and are proportional to the burial depth, so 

that 

Ra,, = Ra cash a1 and Bi,, = Bi cash aI. 

Note that Ra > 0 corresponds to a hot pipe buried 

beneath a cold surface (?i > T2) or a cold pipe 
(R < F2) installed above a hot surface. On the other 

hand, Ra < 0 corresponds to a cold pipe (?r < p2) 
buried beneath a hot surface or a hot pipe located 
above a cold surface. In the latter two cases, one 
should invert the direction of the gravity vector in 

Fig. 1. 
The local heat flux (q) at the pipe’s surface (a = ai) 

or at the medium’s surface (a = 0) can be calculated in 
terms of temperature as: 

coshci-cosfl aT 
q= 

> I *xi a=Oor.,’ 
(7) 

a 

The heat flow (Q) per unit length of the pipe is 

dP. 
a=Oora, 

(8) 

The Nusselt number (Nu) is defined as the ratio of 
the total heat flow (Q) and the heat flow in the absence 
of convection (QconJ 

Nu = Q/Qconc,. (9) 

Unfortunately, no exact expression for Qcond is 
available; so we rely on the following approximate 
expression for Qcond which was reported in [4] 

Q mend zz aBi[(1+aBia,)2- 1]-1’2. (10) 

According to ref. [4] and to subsequent calculations 
carried out here, this expression is accurate within 4 y0 
for (aBi) 3 1. 

3. SMALL RAYLEIGH NUMBER SOLUTION- 
A PERTURBATION EXPANSION 

No exact solution is known for equations (3t(S). In 
this section, we describe a perturbative analysis which 
allows us to obtain approximate solutions for small 
values of the Rayleigh number. To this end, we 
consider the dependent variables (9, T) to be functions 
of both the coordinates (a, 8) and the Rayleigh number 
(Ra). Next, we expand the dependent variables into 

Taylor series in terms of Ra: 

Tb, B; Ra) = f RaWa, B), 
s=o 

W, B; Ra) = f RaVh, B) 
s=1 

(11) 

Q(Ra) = f RaSQs and Nu(Ra) = f Ra”N, 
s=o s=o 

where the terms with index s are the coefficients in the 
Taylor expansions. 

By introducing these expansions (11) into the 
differential equations (3H5) and comparing 

coefficients of like powers in s, we obtain an infinite set 
of linear partial differential equations 

(12) 

and 
a2K a2K ’ a($j, K-j) s+*= c 

j=l a(d) 
(s2 1) 

with the boundary conditions: 

T,=l, r,=O, $,=O (~21) atcr=a, 

aK 
dcr- 

- Big1/2(cr,j3)T,, l(ls = 0 (s 2 0) at a = 0 

dT,_ ag - *, = 0 at /I = 0, II. 

At each level of approximation, the respective 

contributions to the heat flow and to the Nusselt 
number are: 

d/I and Ns=+. 
Fond 

In an earlier paper [8], one of us obtained analytical 

solutions for equations (12), for s < 3, for the special 
case of an isothermal top boundary (Bi -+ co). 
Unfortunately, for the more general case of finite Bi, a 
closed-form analytical solution is not feasible because 

of the appearance of the metric coefftcient g112(a, j?), in 
Robin’s boundary condition at tl = 0 [3,4]. In this 
paper, we use two different approaches to overcome 
this difficulty, one analytical and one numerical. Per 
the numerical approach described in Section 3.2, we 
solve the equations in (12) using finite differences. Per 
the analytical approach described in Section 3.1, we 
further expand the dependent variables into Taylor 
series in terms of the inverse of the Biot number (a-‘). 

The rationale for the deployment of the analytical 
tool is two fold. First, the numerical solution predicts 
extremely small corrections at O(Ra) which may be 
subject to numerical error. Thus, it is desirable to 
obtain analytical expressions as well. Second, it gives 
us the opportunity to demonstrate the usefulness of 
computer algebra in heat transfer analysis. 
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3.1. Analytical solution-a double expansion in Ra 
and Bi 

In order to solve equations (12) analytically, we 
further expand the dependent variables (T,. $,) into 
Taylor series in terms of Bi- 1 : 

T, = pgo Bi-PT,.pk P,, $3 = f Bi-pIC/,pb. P) 
p=o 

(13) 

Q, = f BimPQ,,, and N, = f BiKPN,,. 
p=o p=o 

By introducing the above expansions into the partial 
differential equations and equating coefficients of like 
powers of Bi, we obtain the following set of linear 
partial differential equations: 

a2To p d2To p 
L=O 

aa2 aa= 

with the boundary conditions: 

T,,, = 1; T0.p = 0 (P 2 1); at a = c( 

q,p = $,,, = 0 (s > 1,p 2 0) 
1 

T,,, = 0 (s 2 0); (15) 

1 ST,,-, 
KsP = p; 

91% B) aa 
(s > 0,p 2 l), at c( = 0 

* S.P 

(cl) 
(CZ) 
(c3) 

(63) 

(c4) 
(c5) 

(65) 

(~6) 

(d6) 

(c7) 
(C8) 
(c9) 

(d9) 

where y stands either for j& or gs,p,n and the LHS is a 
forcing term which increases in length and complexity 
as the order of the approximation increases. 
Fortunately, the tedious repetitive labor of solving 

equations like (17) can be delegated to the computer. 
To this end, we use MACSYMA. In Fig. 2, we 
reproduce a short program which describes the 
solution procedure for gi,,,&). Similar procedures 
were used to solve the other equations involved. 

=o (S>O,P~O) In Fig. 2. lines labeled (ci) and (di) represent the 

loadprint:false$ 
y:y(x)$ 

and 
?T 
2=$,,,=0 (s>O,p>O) at/?=O_n. 

(:p 
Also 

1=Oorl, 
d/j’ and N,,, = &C,, 

030 

where 

C,,, = Qs,p - b$ ,tl Cs,p-kQo,k. 

The advantage of equations (14) over (12) is that 
they can be solved exactly. To this end, we expand the 

dependent variables (tj,,,, T,,,) into their Fourier series 
in terms of 0. That is: 

T,,, = c .&..(cO cos nB 
n=O 

(16) 

$,,, = i s,,,,,(a) sin nB. 
“=I 

Upon substitution of (16) into (14) one obtains 
equations of the general form 

d=? 
da2 -n2y = LHS(a) (17) 

eql: diff(y,x,Z)-nA2*y=2*n*exp(-n~x)/xl; 

d2 
-nx 

2 2 " %e 
--- (Y(X)) - n y(X) = ------__--- 

2 Xl 
dx 

assume(n>O)$ 
ode2(eql,y,x); 

-nx 
(2 n I[ + 1) %e "X -nx 

y(X) * _ ------------------_ + %kl %e + Ok2 %e 
2 n xl 

linsolve~Csubst~xl,x,part~d5,2~~=0,subst~0,x,part~dS,2~~=O3,C%kl.%k23~: 
2 n xl 

C%kl = _____'______, %k2 = _"~_______~_"_~_~'_~_~__, 
2 " xl 2 n xl 

%e -1 2 n xl %e - 2nrl 

gy:part(d5,2)$ 
gy:ratslrp(ev(yy,d6))$ 
g(x):="Yy; 

2 n xl 2nx 
x %e + (1 - %e ) xl-x 

y(x) := - __------------------------------- 
2nx1+nr nX 

Xl %I? -%e xl 

(ClO) quite; 

FIG. 2. An example of a MACSYMA program for the soiution of second-order ODE 
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user’s input and the machine’s response, respectively. 
For brevity’s sake, we denote gl,l,n by y and use x 

instead of a. In line (~2) we declare y to be a function of 
x. In line (~3) we type in the corresponding differential 

equation. The machine responds in line (d3) with a 
somewhat nicer expression which allows us to verify 
conveniently the correctness of the input. In line (~5) 
we invoke the routine (ode2) which is a solver for 
ODES of the second order. The solution appears in 
line (d5) with two constants of integration %kl and 
y/,k2. In order to calculate these constants of irtegra- 
tion, we utilize the boundary conditions and then solve 
two linear algebraic equations for %kl and ‘dk2 by 
invoking the linear equations solver (linsolve) in line 
(~6). The expressions for y,gk 1 and %k2 appear in line 
(d6). The variable yy appearing in lines (c7)-(~9) is a 
dummy variable which is used merely for 
programming convenience. In the final result listed in 

line (d9), the undetermined coefficients %kl and %k2 
are replaced with their corresponding values and the 
resulting expression is simplified. 

Manipulations like those described above allow us 
to obtain solutions for the streamfunction and the 
temperature fields. A sample of the results is given 
below: 

T 
091 

= 1 ai -a +sinh(a-cc,)cos/? 

(I 4 ai sinh a1 1 

-;($+coth.l)Sinhh--;l)cosP (18) 

1 cash ai sinh 2(c( -c(r) cos 28 

+2 a1 sinh a, sinh 2a, 1 
*Lo = IJ 

[ 

-5; cosh~_;os /) 

1 

sinhna 
+ f e-““lsinh sin np 

II=, 1 1 
1 

etc. 
In this section, our prime interest is in obtaining 

correlations for the heat transfer. Keeping this fact in 
mind, we can save a considerable amount of effort by 
considering the relationship 

Q,,, = _L 2n LL 

S( 

aT,,-1 

“1 0 iP2b, PI h 
dfi 

m=o 

-$il $oJ:’ {02’ T,,,-,$dSda 

with s > 1,p > 1. 

The foregoing can be rewritten as 

(20) 

where ’ denotes differentiation with respect to a. The 
advantage of expressions (19) and (20) over (15) is 
that to obtain the correction Qs,p, we need only cal- 
culate terms up to order (s, p - 1). Expression (20) is 
especially convenient for use with MACSYMA. 
Needless to say, we use computer algebra to evaluate 
both the derivatives and the integrals in (20). As a 
result of our effort, we obtain a few analytical 
expressions for Qs,p as functions of al, i.e. 

Qo,o =; 

QO,I = -2 
1 

1 > 

Because of the considerable length of the analytical 

expressions for other Qstp. we do not reproduce them 
here (they can be obtamed from us upon request). 

However, we do depict in Fig. 3 the corresponding 
numerical values of Q_ as functions of the burial 

depth (d). We note that with an increase in d, there is a 
gradual increase of the values of Q2,0 and -Qs,o 

whereas -Qi,i and Q, ,2 decrease very steeply. Having 
thus obtained the values of Qs,p, we can calculate the 
heat flow for low Rayleigh numbers and high Biot 
numbers using the following formula: 

Q = (Qo,o+Bi-‘Qo,,+Bi-‘Qo,,) 

+Ru(Bi-‘Q,,, +Bi-2Q,,,)+Ra2Q2,0 

+Ra3Q,,o+O(Bi-3,RaBi-3,Ra2Bi-1,Ra4). 

(21) 

1 , I I I 

.8 

.6 

.4 

.2 

0 

(19) 
FIG. 3. The coefficients Q1,l, QI,z, Q2,0 and Qp,O depicted as 

functions of the burial depth (d). 
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In principle, additional terms could be calculated in 
(21) using the techniques outlined above; but as the 
order of approximation increases so do the demands 
on computer time and memory. We note in passing 
that even if many terms in the expansion were 
calculated, the expansion would not be valid for the 
full range of Biot and Rayleigh numbers since 
functions like QfRa, Bi) typically have singularities 
lying in the complex Bi and Ra planes which limit their 
radii of convergence. With the limited number of terms 
we have, we are unable to find the radius of 
convergence of equation (2 1). 

3.2. Numerical solution-an expansion in Ra 
In this sub-section, we use equations (12) as our 

starting point. We noted earlier that these equations 
cannot be integrated analytically in a closed form. The 
same equations can, however, be integrated 
numerically. To this end, we use a second-order 
accurate finite-difference scheme. As a result of these 
calculations, we obtain the coefficients N, in the 
Nusselt number expansion: 

Nu = f N,Ra” where N, = 1. (22) 
s=o 

All the calculations are carried out for two different 
grid sizes (n x n) = (45 x 45) and (90 x 90). Although 
the equations solved are linear, it was necessary to use 
a relatively large number ofgrid points since the rate of 
convergence is adversely affected by the singularity at 
(cc = p = 0), which corresponds to infinity in the 
physical plane. 

The actual values of N, are obtained using 
Richardson’s extrapolation technique to zero grid size 
[12]. Briefly, in this method, N, is considered to be a 
linear function of n- z. The extrapolated value of N, is 
obtained by taking the limit of N, as n -+ co. The 
procedure is described schematically in Fig. 4, where 
we depict values of N, and N, calculated at c1 = c~i 

1.55 e__, I I I .55 

.5 Is: 
X 

-45 z” 

I 

.4 

.35 
.025 .05 .075 . 1 .125 

1 0wr12 
FIG. 4. Richardson’s extrapolation of N, and N, to zero 
grid size. The soiid line corresponds to the values calculated 
at the pipe’s surface, while the dashed line represents the 
values next to the medium’s surface. Burial depth (d) is 2 and 
Biot number (Bi) is OX Symbols correspond to the numerical 

data. 

X 

27 
n 

z” 

40 I I ’ / 1 
I- -- -N, 

N, I ‘f I 
30 

20 

10 

0 

. + El==0.1 
/ 

-1.0 / 9 
0 
* =m / 

I I 
6 1 
d 

11 

FIG. 5. The variation of N, and N, as a function of the burial 
depth (d) for different values of Biot number (Bi). 

(solid lines) and CI = al/(n - 1) (dashed lines) as 
functions of n- ’ for a pipe buried at depth d = 2 
beneath an isothermal surface (Bi -+ m). In order to 
convince ourselves that N,, indeed, behaves linearly 
with nm2, we calculated N, also for a number of 
intermediate values of n (i.e. n = 30,40,50,60 and 70). 
The latter are depicted as symbols in Fig. 4. Clearly, a 
linear relationship exists between N, and n-* for 
n > 30. 

We also compare the numerical results with the 
analytical ones (Section 3.1 and ref. [S]). The latter are 
depicted as horizontal dashed lines in Fig. 4, and they 
agree within 0.1% with the extrapolated values for N,. 

The results for N, and N, as a function of the burial 
depth d are depicted in Fig. 5 for Bi = 0.1: 1.0 and c~. 
The coefficient N, EZ 0 for Bi = 00. For 0.1 < Bi < a 
and d > 2. N, is very small. Hence, in most practical 
cases, one may assume N, N 0 for all Biot numbers. 
This is in agreement with the analysis presented in 
Section 3.1. Both the absolute values of N, and N, 
increase as the burial depth increases and as the Biot 
number decreases. This indicates the growing relative 
importance of convection as d increases and/or Bi 
decreases. 

Accurate estimation of the largest value of Ra (the 
radius of convergence denoted by Ra,) for which the 
series (22) is still convergent is not feasible due to the 
small number of coefficients (NJ available to us. The 
fact that N, and N3 are of about the same order of 
magnitude suggests that Ra, k 0( 1). The range of 
utility of the series (22) based on comparison with the 
numerical solution of the non-linear equations (3) is 
given in Fig. 6 as a function of the Biot number. The 
radius of convergence increases with Biot number. 

One can significantly increase the range of utility of 
the series (22) through the deployment of non-linear 
transformations. We use Shanks’ transformation 
[14, 153 to obtain: 

1 -I- ARa + BRa’ 
Nu=- 

l+ARa 
(23) 

where A = -N,/N, and B = N2. 
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60 

: 
m 

2 40 

20 

0 

1 

IA/ Shank’s transformation 

1 

Taylor axpanstcn 

-4 
1 10 100 1000 10000 

Bi 

FIG. 6. The range of utility of Taylor expansions and 
Shanks’ transformation for a hot pipe depicted as a function 

of the Biot number (a). 

The values A and B can be calculated from Fig. 5 or 
by using the following correlation: 

A = al&Q and B = lO-*~(~~~*~+~~) (24) 
where 

a, = 0.28 + (O.O58/~i~ - (0.~29/Biz) 

lz2 = 0.4 - {O.O48/Bi) + (0.0042/BiZ) 

b, = 1.084 -(1.016/E)+ (0.091/Bi2) 

and 
b, = 0.393 + (0593/Bi) - (0.053/Si2) 

b, = 3.85 tanh(0.45/Bi) -0.71. 

It turns out that, for the hot pipe (Ra > 0), Shanks’ 
transformation increases the range of utility of 
expression (22) by at least an order of magnitude. The 
range of utifity of Shanks’ transfo~ation is estimated 
by comparing results obtained from (23) with 
numerical solutions of the full non-linear equations. 
This range of utility is depicted in Fig. 6 as a function 
of the Biot number. 

The results for the case of the cold pipe (Ra < 0) are 
not nearly as spectacular. Here, the range of utility of 
Shanks’ transformation (23) is about the same as that 
of the series (22). This poor performance of Shanks’ 
transformation is apparently a consequence of the fact 
that for Ra < 0, Shanks’ transformation becomes 
singular at Ra = - l/A, This poor performance also 
can be explained on the basis of physical 
considerations. The ~rturbation expansion de- 
veloped here assumes that the phenomena is con- 
duction dominated. This is true in the case of the 
hot pipe. However, in the case of the cold pipe, 
convective effects may be more important than the 
conductive ones, and thus poor performance of the 
series solution may be expected. 

Thus far, we have succeeded in obtaining a 
correlation for the Nusselt vs Rayleigh number 
[equation (2311 using perturbative analysis. The 
numerical solution of the non-linear equations serves 
as an important tool in the verification of the above 

correlation. In the next section, we briefly describe this 
numerical procedure. 

4. SOLUTION OF THE NON-LINEAR PROBLEM 

The governing differential equations (3), in 
conserving form, are converted into finite-difference 
equations. Central differences and Patankar’s power- 
law technique are used to approximate the diffusive 
and convective terms, respectively [13]. The above 
numerical scheme is overall first-order accurate. 

The grid system in the physical domain is shown in 
Fig. 1. Through the use of bicylindrical coordinates, 
the computational domain is transformed into a 
rectangle (0 < fi < tr, 0 < tl < al). A relatively large 
number of grid points are used here because the rate of 
convergence is adversely affected by the singularity at 
a = p = 0 (the infinity in the physical plane). The 
number of grid points used ranges from 41 x 51 to 
61 x 91 depending upon the value of the burial depth 
and the Darcy-Rayleigh number. For the higher 
effective Darcy-Rayleigh numbers and for negative 
Rayleigh numbers, one must use the large number of 
grid points. 

We solve the unite-diffe~nce form of governing 
equations using successive over-relaxation [ 111. For 
low effective Rayleigh numbers, the optimal over- 
relaxation parameter can be used [ 1 l]. As the effective 
Rayleigh number increases, however, we find it 
necessary to decrease the relaxation parameter in 
order to maintain numerical stability. The iterative 
procedure is terminated once the following 
convergence criterion was satisfied: 

s was assigned the value 10e4 since the use of a more 
stringent condition did not make any significant 
difference in the solution. The number of iterations 
(typically between 200 and 1200) required to satisfy 
the above criterion varied with the effective Rayleigh 
number and the overrelaxation parameter. The very 
initial state consists of no motion and a conductive 
temperature distribution. 

5. RESULTS AND DISCUSSION 

In this section we describe the results of the 
numerical expe~ments (Section 4) as well as those of 
the perturbative analysis (Section 3). The first part of 
the section is devoted to a description of the 
temperature and flow fields while the second part deals 
with heat transfer. In the third part, we briefly discuss 
the range of validity of our results. 

5.1. Flow and temperature fields 
The temperature and flow fields associated with hot 

and cold buried pipes are depicted in Figs. 7-9. These 
are the results of the numerical simulation (Section 4). 
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FIG. 7. Thermal convection around a hot buried pipe (d = 2, 
Ra = 10, Ei = 1). The uniformly spaced streamlines and 
isotherms are shown on the LHS and RHS of the figures, 

respectively. 

Both the streamlines and isotherms are uniformly 
spaced. 

Figures 7 and 8 describe, respectively, the cases of 
hot and cold pipes buried at a depth d = 2, with Bi = 1 
and [Ral = 10. In the case of the hot pipe (Fig. 7) the 
fluid adjacent to the pipe becomes hotter and thus 
tends to rise until it hits the top, cold surface. As the 
fluid travels along the cold, horizontal surface, it cools 
down and eventually descends to form a convective 
cell. On the other hand, in the case of the cold pipe 
(Fig. 8), the fluid adjacent to the pipe becomes colder 
and tends to sink. As the fluid descends, its 
temperature is equalized with the temperature of its 
surroundings until eventually it loses its negative 
buoyancy. Since fluid withdraws to the vicinity of the 
pipe due to pressure differences, once again we observe 
the development of a single convective cell. In the case 
of the hot pipe (Fig. 7), no plume structure develops at 
this low Rayleigh number (Ra = 10, Ru,, = 20). In 

contrast, in the case of the cold pipe (Fig. 8) one 
observes a clear evolution of a plume structure. This 
difference is attributable to the fact that, in the case of 
the cold pipe, the convective motion is not constrained 
by a surface, while in the case of a hot pipe it is. 
Consequently, Ra,, in Fig. 8 is considerably larger 
than the one in Fig. 7. As Ra,, increases, a plume 
structure develops even in the case of the hot pipe as is 
evident from Fig. 9 (Ra,, = 100). 

In all our numerical experiments, we observed a 
flow structure consisting of two counter-rotating 
convective cells (Figs. 7-9). In the range of parameters, 
we considered, no two-dimensional bifurcations into 
multicellular convection were detected. 
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FIG. 8. Thermal convection around a cold buried pipe 
(d = 2. Ra = - 10. Bi = I). The uniformly spaced 
streamlines and isotherms are shown on the RHS and LHS of 

the figure, respectively. 

FIG. 9. Thermal convection around a hot buried pipe 
(d = 10, Ra = 10. Bi = ~8). Uniformly spaced streamlines 
and isotherms are shown on the LHS and RHS of the figure, 

respectively. 

The temperature distribution along the top surface 
is depicted in Fig. 10. The upper and lower halves of 
the figure correspond, respectively. to hot (Ra > 0) 
and cold (Ra < 0) pipes. The effect of the Rayleigh 
number on the temperature distribution is shown on 
the RHS for Bi = 1, while the effect of the Riot number 
is depicted on the LHS for lRa( = 10. 

For Bi -+ co, the temperature of the top surface 
remains uniform. As the Biot number decreases, the 
temperature deviates from uniformity and a Gaussian- 
like temperature distribution evolves. The tem- 
perature extreme occurs immediately above the pipe. 
For the hot and cold pipes, the temperature peak 
increases in magnitude as the Biot number decreases. 
As the Rayleigh number increases the temperature 
peak increases for the hot pipe while it decreases for 
the cold pipe. In the latter case, conduction causes a 
decline in the surface temperature while the 
convection tends to equalize the surface temperature. 
Thus, as the intensity of the convection increases (as 
the magnitude of Rayleigh number increases) the 
magnitude of the temperature extreme decreases. 

5.2. Heat transfer 
In this sub-section (Figs. 11-13) we compare the 

results obtained with the correlation [equation (23)] 
derived in Section 3 with those of the numerical 

-25 -12.5 0 12.5 25 
Y 

FIG. 10. Variation of the medium’s surface temperature as a 
function of the horizontal distance(Y) from the pipe’s axis for 
various values of Biot number (Bi) and Rayleigh number 

(Ra). The burial depth d = 2. 
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FIG. 11. The Nusselt number (NM) is depicted as a function 
of the Rayleigh number (Ra) for various values of the Biot 
number (Bi) for burial depth d = 2. The curves correspond to 
the Shanks’ transformation while the symbols represent the 

results of non-linear numerical simulation. 

simulations (Section 4) as they pertain to the heat 
transfer problem. 

The Nusseit number as a function of the Rayleigh 
number is depicted in Fig. 11 for hot and cold pipes 
buried at depth d = 2 for J3i = 0.1, 1 and xi. The 
various curves correspond to the correlation 
[equation (23)J while the symbols represent the results 
of the numerical simulation (Section 4). Clearly, there 
is good agreement between the correlation and the 
numerical results. The range of utility of the 
correlation. depicted in Fig. 6, is determined as the 
largest Rayleigh number for which the difference 
between the correlation and the numerical simulation 
is smailer than 5 %. The top and bottom curves in Fig. 
6 indicate the range of utility of the correlation for the 
cases of the hot and cold pipes, respectively. 

In Fig. 12, we depict the heat Row (Q) associated 
with hot and cold pipes buried beneath an isothermal 
surface (Bi -+ CL) as a function of the burial depth (d) 
for Ru = - 1, 10,20,30 and 40. The solid lines in Fig. 
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FIG. 12. The heat flow rate(Q) is depicted as a function of the 
burial depth (d) for Bi = cc. Solid curves represent the 
correlation [equation (23)] while symbols represent the 
results of numericai experiments. The numerical data is 
connected with dashed lines. The asymptotic value for a pipe 
buried in an infinite, porous medium is denoted by the 

horizontal broken line on the RHS of the figure. 

12 represent the correlation (23) while the symbols 
denote the results of the numerical simulation. The 
dashed lines are provided for better readability and 
they connect the numerical data points. In the case of 
the hot pipe, the heat interaction (Q) decreases initially 
as the burial depth increases, reaches a minimum and 
then increases again, approaching asymptotically a 
value which corresponds to the heat losses associated 
with a pipe buried in an in~nite medium (the 
horizontal broken lines on the RHS of Fig. 12). The 
asymptotic values for a pipe buried in an infinite, 
porous medium were obtained from Cheng’s work 
[9]. Clearly, in the case of the hot pipe, there exists an 
optimal burial depth for which the heat losses are 
minimized. A similar optimum does not exist for the 
case of the cold pipe. Here, the heat losses (Q) decrease 
monotonically as the burial depth increases until they 
reach the asymptotic value associated with a pipe 
buried in an infinite medium. 

A physical explanation for the existence of an 
optimal burial depth in the case of the hot pipe was 
given in ref. [9]. Briefly, the heat transfer process 
consists of both conduction and thermal convection. 
As the burial depth of the hot pipe increases, the 
conductive heat losses are reduced. At the same time, 
however, the effective Rayleigh number increases, 
which implies higher losses by convection. 
Consequently, there is an optimal value for which the 
total heat transfer is minimized. As we mentioned 
earlier, such an optimum does not exist in the case of 
the cold pipe. Although the conductive losses of the 
cold pine are reduced as the burial depth increases, the 
convective losses remain about the same, a fact which 
excludes the existence of an optimum point. 

In Fig. 13. we examine the effect of the Biot number 
on the heat transfer. We depict the heat losses (Q) as a 

1.4 

1.2 

Q 1 
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d 

FIG. 13. The heat flow rate(Q) is depicted asa function of the 
burial depth (d) for Ra = 10 and for Bi = 0.1, 1 and x . Solid 
curves represent the correlation [equation (23)] while 
symbols represent the results of numerical experiments. The 
numerical data is connected with dashed lines. The 
as~ptotic value for a pipe buried in an infinite medium is 
given by the horizontal broken line on the RHS of the figure. 
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function of the burial depth (d) for Ra = 10 and 
Bi = 0.1, 1 and co. The solid curves are the results of 
the correlation [equation (23)] while the various 
symbols represent the results of the numerical 
simulation (Section 4). The dashed line connects the 
numerical data points to facilitate a better 
appreciation of the trends. As the burial depth 
becomes large, all the curves approach asymptotically 
a common limit [9] which corresponds to a pipe 
buried in an infinite medium (the horizontal dashed 
line on the RHS of the figure). The magnitude of the 
optimal burial depth decreases as the Biot number 
decreases. For Bi = 0.1, we do not observe an optimal 
depth. Probably, this is because convection plays a 
larger and larger role in the heat transfer process as the 
Biot number decreases, while the conduction effects 
become less and less significant. 

Finally, let us examine the contribution of thermal 
convection to heat losses from buried pipes. Consider, 
for example, a hot pipe, with a radius ii = 0.25 m, 
buried in silica sand (grain size of about 2.54 x 10m4 m 
and permeability 1 N 6 x 10-i’ m2) saturated with 
water. The temperature difference between the pipe 
and the earth’s surface is pi - pZ = 60°C. The 
corresponding Darcy-Rayleigh number is Ra - 10. 
For a pipe buried at depth 2 m (&ii = 8), Nu N 2.8. 
Thus, the thermal convection represents two-thirds of 
the total heat losses. 

5.3. The range of validity of the results 

In this manuscript, we describe theoretical results 
which are based on the assumption that the flow is 
two-dimensional and steady. This, however, is the case 
only for a certain range of Rayleigh numbers. 
Experiments we are conducting in our laboratory 
indicate that there exists a critical Rayleigh number, 
beyond which the convective motion becomes three 
dimensional and oscillatory. For example, for burial 
depths of 7 and 14, the bifurcation into three- 
dimensional convection occurs at Raell z 90 and 200, 
respectively. However, these values are somewhat 
larger than the range of utility of our correlation 
(Fig. 6). 

Another matter of concern is the validity of the 
Darcy-Oberbeck-Boussinesq (DOB) equations for 
the range of Rayleigh numbers considered in this 
study. Darcy’s law is considered to be valid for 
Reynolds numbers Re < 10, where Re = ii,d,/v. In the 
foregoing equation, d, is a characteristic dimension of 
the porous media (i.e. pore or particle diameter) and ii, 
is the Darcian velocity. In our case, the maximum 
velocity is obtained next to the pipe and is 
O[g/?(pi -I-i;)+]. Consequently, we conclude that 
the DOB equations are valid for 

Ra < lOPr$ 
P 

where Pr is the Prandtl number. For example, in the 
case of water Pr - 8 and r,/d, - lo’, the DOB 

equations are valid for Ra,, - 0( 10J). This magnitude 
of the Rayleigh number is well above those considered 
in this study. 

6. CONCLUSION 

A theoretical solution has been provided for the 
flow and temperature fields around a pipe buried in a 
permeable medium, the surface of which is subject to 
Robin’s boundary condition. Expressions for the 
streamfunction and temperature fields were provided 
using a double expansion in the Rayleigh number and 
the inverse of the Biot number. The analytical 
expressions were valid only for small Rayleigh 
(Ra < 1) and large Biot numbers. The restriction on 
the magnitude of the Biot number was removed by 
constructing numerically a perturbation expansion. 
This allowed us to derive a Taylor series for the 
Nusselt numbers in terms of the Rayleigh number. The 
range of validity of the above series was still restricted 
to small Rayleigh numbers. However, by using a non- 
linear transformation, we were able to considerably 
increase the range of utility of the series for hot pipes. 
Thus, we obtained a correlation for the Nusselt 
number as a function of burial depth, Rayleigh 
numbers and Biot numbers. The validity and range of 
utility of the correlation were established by 
comparison with numerical solutions of the non-linear 
equations. 

Finally, we demonstrated that an optimal burial 
depth, which was originally observed in ref. [S] for the 
case of an isothermal medium surface, also exists for 
surfaces with convective boundary conditions. The 
magnitude of this optimal burial depth decreases as 
the Biot number decreases. 
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CONVECTION THERMIQUE ASSOCIEE AVEC DES CANAUX CHAUDS/FROIDS DANS 
UN MILIEU SEMI-INFINI, POREUX ET SATURE 

R&sum&-On prisente des solutions analytiques et numbriques pour la convection thermique permanente 
induite par des canaux chauds/froids dans un milieu poreux sature, semi-infini, dont la surface est hori- 
zontale, impermeable et sujette a la condition limite de Robin. La surface du canal est impermeable et 
isotherme. La solution analytique conceme un double developpement en termes de nombres de Rayleigh 
et de Biot inverse. L’ordinateur est utilise pour les manipulations mathbmatiques les plus ptnibles 
(MACSYMA). L’approche numerique implique a la fois la construction dun diveloppement regulier 
de perturbation en fonction du nombre de Rayleigh et la nature des equations completes non lineaires. 
Les resultats des deux approches qui concement la description des champs d’boulement et de tempera- 

ture ainsi que les valeurs du nombre de Nusselt, sont compares et on trouve un accord satisfaisant. 

THERMISCHE KONVEKTION AN HEISSENKALTEN ROHREN IN EINEM 
HALBUNENDLICHEN GESATTIGTEN POROSEN MEDIUM 

Zusammenfassung-Es werden analytische und numerische Liisungen fiir die stationare thermische Kon- 
vektion vorgestellt, welche durch heil3e bzw. kalte Rohre in einem gesattigten halbunendlichen durch- 
liissigen Medium induziert wird. Die Oberflache des Mediums ist horizontal, undurchlassig und unterliegt 
den konvektiven Randbedingungen von Robin. Die Rohroberfliche ist undurchllssig und isotherm. Die 
analytische L&sung besteht aus einer doppelten Reihenentwicklung nach der Rayleigh- und der inversen 
Biot-Zahl. Die Computer-Algebra (MACSYMA) wurde zur Bewaltigung der umfangreichen mathe- 
matischen Prozeduren verwendet. Das numerische Naherungsverfahren verwendet sowohl einen gewiihn- 
lichen Stiirungsansatz mit einer Reihenentwicklung nach der Rayleigh-Zahl als such die Liisung des 
vollstandigen Satzes der nicht-linearen Erhaltungsgleichungen. Die Ergebnisse der Stiirungsanalysen und 
der numerischen Berechnungen, welche sowohl Beschreibungen des StrBmungs- und Temperaturfeldes 
als such Korrelationen fiir die Nusselt-Zahl enthalten, wurden verglichen und zeigen zufriedenstellende 

Ubereinstimmung. 

TEIIJIOBAX KOHBEKHHtI, BbI3BAHHAR rOPflWIMH/XOJIO~HbIMH TPYBAMM, 
IIOI-PYTEHHbIMM B IIOJIYBECKOHE9HYIO HACbILLIEHHYIO l-IOPZlCTYIO CPEAY 

AunoTamm-UIonyseHbr aHa.rniTwtecxne B wcnexiHble pelueH5in ypaBHeHuir crarnionapnofi rerutoaofi 
KOHBeKnUA, 06yCJtOBIteHHOti rOpKHHiUH/XOnOQ21bIMH Tpy6aMn, nOrpyXCeHH,,rMU a HaC,,nHeHHym nOny6eG 
KoHeHHym npominaeMyr0 cpeny, orpariu~emiym ropri30nranbnoii rienpominaeMofi noeepxaocrbro, ria 
~0~0p0fi abmonHrnorcK rpawvuible ycnoewr Po6rina. IIonepxeocrb ~py6br KenKercIl nenpominaehfofi n 
u3orepMmiecxofi. AHa.IIHTHHecKOe pemeHHe ocnoaano na noc~poemin n~0itn0r0 prunoxceaan no napa- 

MeTpaM P3neSl H E;UO. ffpH BbHIOJlHeHHH 6onee TpynOeMKHX MaTeMaTHHeCKHX paCHeTOB HC"Onb30Ba- 
nacb BbrvncnaTenbHai+ nporpabwa (MACSYMA). YecneHHoe pemeHHe aKnroHaer KBK nocrpoeHse 

pa3noEeHHa perynnpHblx B03MyueHSi no HHcny Psnen, TaK apelrrexise~cxoLUib~X HenHHeiiHbrx ypaeee- 
H5ikllpoBeneHo cpaBHeHHe pe3ynbTaToB aHanH3a n03MyueHHii H HHcneHHbrx pac~eToB,omicblBalo~Hx 
nona TeHeHHK H TehtnepaTypbx,a TaKwe 3aBacuMocreii arm wicna HyccenbTa;HaiineHo xopomee COOT- 

BeTCTBHeBCeXBenHYBH. 


